质数是什么意思?1–100的质数(质数是什么意思?因数是什么意思?)

质数是什么意思?

质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,

是素数或者不是素数。

如果

为素数,则

要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。

以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。

孪生质数也有相同的分布规律。

以下15个区间内质数和孪生质数的统计数。

S1区间1——72,有素数18个,孪生素数7对。(2和3不计算在内,最后的数是孪中的也算在前面区间。)

S2区间73——216,有素数27个,孪生素数7对。

S3区间217——432,有素数36个,孪生素数8对。

S4区间433——720,有素数45个,孪生素数7对。

S5区间721——1080,有素数52个,孪生素数8对。

S6区间1081——1512,素数60个,孪生素数9对。

S7区间1513——2016,素数65个,孪生素数11对。

S8区间2017——2592,素数72个,孪生素数12对。

S9区间2593——3240,素数80个,孪生素数10对。

S10区间3241——3960,素数91个,孪生素数19对。

S11区间3961——4752素数92个,孪生素数17对。

S12区间4752——5616素数98个,孪生素数13对。

S13区间5617——6552素数108个,孪生素数14对。

S14区间6553——7560素数113个,孪生素数19对。

S15区间7561——8640素数116个,孪生素数14对。

素数分布规律的发现,许多素数问题可以解决。

质数一共有多少个?

质数(prime number)又称素数,有无限个。一个大于1的自然数,如果除了1和它自身外,不能被其他自然数整除(除0以外)的数称之为素数(质数);否则称为合数。根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是唯一的。

在自然数域内,质数是不可再分的数,是组成一切自然数的基本元素。 比如,10 是由2和5的积,质数有无穷多个,因此算术世界的元素也就有无穷多个。算术世界内的一切对象、定理和方法,都是由其基本元素质数组成的。

在自然数域内,质数是不可再分的数,是组成一切自然数的基本元素。 比如,10是由两个 2 和一个 3 组成的,正如水分子是由两个 H 原子和一个 O 原子组成的一样。只是和化学世界不同,质数有无穷多个,因此算术世界的元素也就有无穷多个。算术世界内的一切对象、定理和方法,都是由其基本元素质数组成的。

只有1和它本身两个正因数的自然数,叫质数(或称素数)。(如:由2÷1=2,2÷2=1,可知2的因数只有1和它本身2这两个约数,所以2就是质数。与之相对立的是合数:“除了1和它本身两个因数外,还有其它因数的数,叫合数。”如:4÷1=4,4÷2=2,4÷4=1,很显然,4的因数除了1和它本身4这两个因数以外,还有因数2,所以4是合数。)

100以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,在100内共有25个质数。

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设 N = p1 × p2 × …… × pn,那么,N+1是素数或者不是素数。

如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。

因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,Hillel Furstenberg则用拓扑学加以证明。

什么是偶数、质数?

1、偶数是能够被2所整除的整数。正偶数也称双数。若某数是2的倍数,它就是偶数,可表示为2n;若非,它就是奇数,可表示为2n+1(n为整数),即奇数除以二的余数是一。

2、质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。

3、奇数,正奇数又称单数 , 整数中,能被2整除的数是偶数,不能被2整除的数是奇数,奇数的个位为1,3,5,7,9。

4、合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。

扩展资料

一、质数性质

1、质数的个数是无限的。

2、所有大于10的质数中,个位数只有1,3,7,9。

二、奇数和偶数性质

1、两个连续整数中必有一个奇数和一个偶数;

2、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+…+偶数=偶数;

3、奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数;

4、若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数;

三、合数性质

1、所有大于2的偶数都是合数。

2、所有大于5的奇数中,个位为5的都是合数。

3、除0以外,所有个位为0的自然数都是合数。

4、所有个位为4,6,8的自然数都是合数。

有哪些数属于质数?

100以内的质数有:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

以下是概念辨析,希望对你有所帮助

1、质数是除了1和它本身之外,不能被其他数整除的正整数,又称素数

2、合数是除了质数以外的数,即除了一和它本身以外,还有其他的因数的正整数

3、两者的区别在于因数的个数,质数只有2个因数,合数有多于2个因数

4、注意:1既不是质数,也不是合数

什么是质数?举例说明?

一个数只有1和它本身两个约数的数叫质数,也叫素数,例2,3,5,……

版权声明