圆的面积计算公式文字表达 圆的面积计算公式是几年级学的

圆的面积计算公式。?

圆面积计算公式

公式:圆周率乘以半径的平方

用字母可以表示为:S=πr²或S=π*(d/2)²。(π表示圆周率,r表示半径,d表示直径)。

圆的面积=3.14×半径×半径

圆的周长=3.14×直径=3.14×半径×2

公式推导:圆周长(c):圆的直径(D),那圆的周长(c)除以圆的直径(D)等于π,那利用乘法的意义,就等于 π乘圆的直径(D)等于圆的周长(C),C=πd。而同圆的直径(D)是圆的半径(r)的两倍,所以就圆的周长(c)等于2乘以π乘以圆的半径(r),C=2πr。把圆平均分成若干份,可以拼成一个近似的长方形。长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半。长方形的面积是ab,那圆的面积就是:圆的半径(r)的平方乘以π, S=πr²。

六年级圆的公式有哪些?

与圆相关的公式:

1、圆面积:S=πr²,S=π(d/2)²。(d为直径,r为半径)。

2、半圆的面积:S半圆=(πr^2)/2。(r为半径)。

3、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。

4、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。

5、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。

拓展资料

对于任意一个圆,其面积S都是等于圆周率π与半径平方r^2的乘积。或者说,任意一个圆的面积与其半径平方之比都是相同的常数——圆周率。那么,这个结论是经过数学上的严格证明,还是一种数学直觉呢?事实上,圆面积公式(S=πr^2)在数学上能够严格证明,无论是我国古代的数学家,还是古希腊的数学家,都证明了这个公式。圆面积公式的证明方法有很多种,下面简单举几个例子。

(1)极限法一

如果把一个圆分成n个等份,然后将其拼接成如下的四边形:

 

当n趋于无穷大之时,也就是圆分成了无穷多个等份,那么,该四边形就会变成长方形。显然,这个长方形的长为半圆周长(πr),宽为圆的半径(r),该长方形的面积等于圆的面积,所以可得圆面积公式为:S=πr?r=πr^2。

不过,为了完成这样的证明,首先还需证明圆周长公式(C=2πr)。通过相似三角形原理,用几何法很容易可以证明圆的周长与直径之比为相等的常数,该常数即为圆周率。

(2)极限法二

把圆分成n等份,连接每个扇形中半径与圆的交点。并假设每个扇形的圆心角为2θ,则2θ=2π/n。

 

考察其中一个三角形OAB,根据三角函数可得,OC=rcosθ,AB=2rsinθ,三角形OAB的面积为:

S△OAB=1/2·AB·OC=r^2sinθcosθ

当n趋于无穷大时,圆的面积可以表示为:

S=lim(n→+∞)n·S△OAB

根据极限原理,可以算出S=πr^2。

(3)积分法一

严格意义上来说,这也是一种极限法,但这里是通过圆的方程(x^2+y^2=r^2)来严格计算圆面积:

 

 

(4)积分法二

 

如果把圆分成无数个厚度为dr的薄圆环,那么,每个圆环的面积为2πr·dr,对其进行积分可得:

 

总之,圆的面积与半径平方的比值为圆周率是经过严格数学证明的,并非经验公式。

版权声明