蚁群算法原理及实例视频 蚁群算法原理及实例分析

蚁群算法原理及实例?

蚁群算法是一种用来在图中寻找优化路径的机率型算法。

蚁群算法由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。

蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。

针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较;

数值仿真结果表明,这种算法具有分布计算、信息正反馈和启发式搜索的特征,本质上是进化算法中的一种启发式全局优化算法。

蚁群算法原理为:用蚂蚁的行走路径表示待优化问题的可行解,整个蚂蚁群体的所有路径构成待优化问题的解空间。

路径较短的蚂蚁释放的信息素量较多,随着时间的推进,较短的路径上累积的信息素浓度逐渐增高,选择该路径的蚂蚁个数也愈来愈多。

最终,整个蚂蚁会在正反馈的作用下集中到最佳的路径上,此时对应的便是待优化问题的最优解。

延伸阅读

蚁群算法与遗传算法的区别?

都属于智能优化算法但是蚁群算法具有一定的记忆性,遗传算法没有蚁群算法有几种原则,比如觅食原则,避障原则等,遗传算法没有蚁群算法属于群智能优化算法,具有并行性,每个粒子都可以主动寻优,遗传算法不行蚁群算法基于信息素在环境中的指示,遗传算法是基于优胜劣汰的生物进化思想遗传算法有选择,交叉,变异三种算子,每种算子又有各自的不同方法,通过对算子方法的修改和搭配,可以得到不同的改进遗传算法蚁群算法则多和其他智能算法相结合,得到改进的蚁群算法

蚁群算法正确的是?

蚁群算法是通过人工模拟蚂蚁搜索食物的过程,即通过个体之间的信息交流与相互协作最终找到从蚁穴到食物源的最短路径的。

蚁群算法研究目的?

蚁群算法根据模拟蚂蚁寻找食物的最短路径行为来设计的仿生算法,因此一般而言,蚁群算法用来解决最短路径问题,并真的在旅行商问题(TSP,一个寻找最短路径的问题)上取得了比较好的成效。

目前,也已渐渐应用到其他领域中去,在图着色问题、车辆调度问题、集成电路设计、通讯网络、数据聚类分析等方面都有所应用。

蚁群算法的实际应用?

蚁群算法是一种用来在图中寻找优化路径的机率型算法。

蚁群算法由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。

蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。

针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明。

这种算法具有分布计算、信息正反馈和启发式搜索的特征,本质上是进化算法中的一种启发式全局优化算法。

蚁群算法实际应用于其他组合优化问题,如旅行商问题、指派问题、Job—shop调度问题、车辆路由问题、图着色问题和网络路由问题等。

最近几年,该算法在网络路由中的应用受到越来越多学者的关注,并提出了一些新的基于蚂蚁算法的路由算法。

同传统的路由算法相比较,该算法在网络路由中具有信息分布式性、动态性、随机性和异步性等特点,而这些特点正好能满足网络路由的需要。

版权声明