高等数学十大定理公式名称 高中数学66个秒杀技巧模型

高等数学十大定理公式?

零点定理、最值定理、介值定理、费马定理、罗尔定理、拉格朗日中值定理、柯西中值定理、积分中值定理。

举例介绍:

1、零点定理

设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)使f(ξ)=0。(至少存在一个点,其值是0)

2、最值定理

若函数f在闭区间[a,b]上连续,则f在[a,b]上有最大值与最小值。

3、介值定理

因为f(x)在[a,b]上连续,所以在[a,b]上存在最大值M,最小值N;即对于一切x∈[a,b],有N<=f(x)<=M。

因此有N<=f(x1)<=M;N<=f(x2)<=M;…N<=f(xn)<=M;上式相加,得nN<=f(x1)+f(x2)+…+f(xn)<=nM。

于是N<=[f(x1)+f(x2)+…+f(xn)]/n<=M,所以在(x1,xn)内至少存在一点c,使得f(c)=[f(x1)+f(x2)+…+f(xn)]/n。

4、费马定理

函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ处可导,如果对于任意的x∈U(ξ),都有f(x)≤f(ξ) (或f(x)≥f(ξ) ),那么f’(ξ)=0。

5、罗尔定理

如果函数f(x)满足以下条件:

(1)在闭区间[a,b]上连续;

(2)在(a,b)内可导;

(3)f(a)=f(b);

则至少存在一个ξ∈(a,b),使得f'(ξ)=0。

6、拉格朗日中值定理

如果函数f(x)在(a,b)上可导,[a,b]上连续,则必有一ξ∈(a,b),使得f'(ξ)*(b-a)=f(b)-f(a),f(x)在(a,b)上可导,[a,b]上连续是拉格朗日中值定理成立的充分条件。

7、柯西中值定理

如果函数f(x)及F(x)满足:

(1)在闭区间【a,b】上连续;

(2)在开区间(a,b)内可导;

(3)对任一x∈(a,b),F'(x)≠0,

那么在(a,b)内至少有一点ζ,使等式【f(b)-f(a)】/【F(b)-F(a)】=f'(ζ)/F'(ζ)成立。

8、积分中值定理

若函数 f(x) 在 闭区间 [a, b]上连续,,则在积分区间 [a, b]上至少存在一个点 ξ,使下式成立

∫ 下限a上限b f(x)dx=f(ξ)(b-a) ( a≤ ξ≤ b)

高数中都有哪些带人名的公式?

数学公式是以人名命名的:

毕达哥拉斯定理——勾股定理 : a^2+b^2=c^2。

欧拉定理 简单多面体的顶点数V、面数F及棱数E间有关系:

V+F-E=2.

韦达定理:

如果一元二次方程ax2+bx+c=0的根为x1,x2那么x1+x2=-b/a,x1?x2=c/a,称为“韦达定理“

梅涅劳斯(Menelaus)定理。

5.塞瓦(Ceva)定理。

6.西摩松(Simson)定理:若从△ABC外接圆上一点P作三边的垂线,三垂足分共线.

7.托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).

8.笛沙格定理。

高等数学常用三角公式?

它有六种基本函数(初等基本表示):

函数名 正弦 余弦 正切 余切 正割 余割

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

余割函数 cscθ=r/y

以及两个不常用,已趋于被淘汰的函数:

正矢函数 versinθ =1-cosθ

余矢函数 vercosθ =1-sinθ

同角三角函数间的基本关系式:

·平方关系:

sin^2(α) cos^2(α)=1

tan^2(α) 1=sec^2(α)

cot^2(α) 1=csc^2(α)

·积的关系:

sinα=tanα*cosα cosα=cotα*sinα

tanα=sinα*secα cotα=cosα*cscα

secα=tanα*cscα cscα=secα*cotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

三角函数恒等变形公式

·两角和与差的三角函数:

cos(α β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α β)=(tanα tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1 tanα·tanβ)

·辅助角公式:

Asinα Bcosα=(A^2 B^2)^(1/2)sin(α t),其中

sint=B/(A^2 B^2)^(1/2)

cost=A/(A^2 B^2)^(1/2)

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半角公式:

sin(α/2)=正负√((1-cosα)/2)

cos(α/2)=正负√((1 cosα)/2)

tan(α/2)=正负√((1-cosα)/(1 cosα))=sinα/(1 cosα)=(1-cosα)/sinα

·降幂公式

sin^2(α)=(1-cos(2α))/2

cos^2(α)=(1 cos(2α))/2

tan^2(α)=(1-cos(2α))/(1 cos(2α))

·万能公式:

sinα=2tan(α/2)/[1 tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1 tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α β) sin(α-β)]

cosα·sinβ=(1/2)[sin(α β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α β) cos(α-β)]

sinα·sinβ=-(1/2)[cos(α β)-cos(α-β)]

·和差化积公式:

sinα sinβ=2sin[(α β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α β)/2]sin[(α-β)/2]

cosα cosβ=2cos[(α β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α β)/2]sin[(α-β)/2]

高等数学函数公式?

高等数学公式是考研以及理工类研究的基础,也是重中之重,掌握这些公式能够帮助考生快速学习高等数学相关知识。

极限:

设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式:|f(x)-A|<ε。

导数:

1、 C’=0(C为常数函数)

2、 (x^n)’= nx^(n-1) (n∈Q);

3、 (sinx)’ = cosx

4、(cosx)’ = – sinx

5、 (e^x)’ = e^x

6、 (a^x)’ = (a^x) * Ina (ln为自然对数)

曲率:

K = lim(Δs→0) |Δα/Δs|,当曲线y=f(x)存在二阶导数时,K=|y”|/(1+ y’ ^2)^(3/2):曲率半径R=1/K。

不定积分:

1、∫0dx=c;

2、∫x^udx=(x^u+1)/(u+1)+c;

3、∫1/xdx=ln|x|+c

4、∫a^xdx=(a^x)/lna+c

5、∫e^xdx=e^x+c

6、∫sinxdx=-cosx+c

7、∫cosxdx=sinx+c

扩展资料:

高等数学定义:

广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。

课程特点:

在中国理工科各类专业的学生(数学专业除外,数学专业学数学分析),学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。

高等数学最出名的公式?

1、欧拉恒等式。

欧拉恒等式也叫做欧拉公式,它是数学里最令人着迷的公式之一,它将数学里最重要的几个常数联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。

2、高斯积分。

高斯积分是在概率论和连续傅里叶变换等的统一化等计算中有广泛的应用。在误差函数的定义中它也出现。虽然误差函数没有初等函数,但是高斯积分可以通过微积分学的手段解析求解。高斯积分,有时也被称为概率积分,是高斯函数的积分。

3、傅立叶变换。

傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。

高数基础知识公式?

高数公式:

(1)∫kdx=kx+c

(2)∫x^udx=(x^(u+1))/(u+ c

(3)∫1/xdx=ln|x|+c

(4) ∫a^xdx=(a^x)/lna+c

(5)∫e^xdx=e^x+c

(6)∫sinxdx=-cosx+c

(7)∫cosxdx=sinx+c

(8)∫1/(cosx)^2dx=tanx+c

(9)∫1/(sinx)^2dx=-cotx+c

(10)∫1/√(a^2-x^2)dx=arcsin(x/a)+c

(11)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c

(12)∫1/(a^2-x^2)dx=(1/(2a))ln|(a+x)/(a-x)|+c

(13)∫secxdx=ln|secx+tanx|+c

(14) ∫sec^2 x dx=tanx+c;

(15) ∫shx dx=chx+c;

(16) ∫chx dx=shx+c;

(17) ∫thx dx=ln(chx)+c;

(18)∫k dx=kx+c

(19) ∫1/(1+x^2) dx=arctanx+c

(20) ∫1/√(1-x^2) dx=arcsinx+c

(21) ∫tanx dx=-In|cosx|+c

(22) ∫cotx dx=In|sinx|+c

(23) ∫secx dx=In|secx+tanx|+c

(24) ∫cscx dx=In|cscx-cotx|+c

(25) ∫1/√(x^2+a^2) dx=In(x+√(x^2+a^2))+c

(26) ∫1/√(x^2-a^2) dx=|In(x+√(x^2-a^2))|+c。

版权声明