高中数学知识点(高中数学知识点最全版)

高中数学知识点

高中数学知识点?

  • 完整问题:高中数学知识点?
  • 好评回答:你好,其实你只要在百度搜索栏输入高中数学知识点就会出现很多这方面的资料,其中百度文库里有好多很全的,而且很多是免费的。 很不错的,全国通用的。 一、知识结构: 三角函数的定义,包括任意角的三角函数的符号,同角三角函数的关系式,诱导公式,两角和与差的三角函数公式,以及它们的变形公式等等。然后,我们又共同学习了三角函数(主要是:正弦函数、余弦函数、正切函数)的图象和性质。接下来,我们又共同探讨了它们的应用。运用上述公式和性质主要是进行三角函数式的化简、求值、证明以及它们的综合运用 二、基本知识点: 概念:(1)角的概念推广,正角、负角、零角,终边相同的角;(2)弧度制:一弧度角的定义(长度等于半径长的弧所对的圆心角);弧长公式为: =| |r(其中 为弧长,r为半径, 为圆弧所对圆心角的弧度数);角度制与弧度制的换算( 弧度);(3)任意角的正弦、余弦、正切、余切、正割、余割六个三角函数的定义,定义域,三角函数线,三角函数值在各个象限的符号;(4)同角三角函数间的基本关系式、平方关系、商数关系、倒数关系;(5)诱导公式,主要包括π± ,2π± , ± , ± 与 角三角函数间的关系;(6)两角和、差的正弦,余弦、正切公式及其变形;(7)二倍角、半角的正弦、余弦、正切公式;升降幂公式;万能公式;(8)三角函数的图象和性质(定义域,值域(包括最值),奇偶性,周期性,单调性,函数的图象,对称点,对称轴);(9)用 , , 表示角 方法:1。已知一个角的一个三角函数值,求这个角的其他三角函数值的方法;2。利用诱导公式求任意角三角函数值的方法;3。已知一个角的一个三角函数值,求符合条件的角的方法;4。利用三角公式进行恒等变形的方法(变角、变次数、变函数名称、变运算关系等);5。证明角相等的方法和证明三角恒等式的方法;6。作三角函数图象的方法-五点法;7。三角函数图象变换的方法;8。求三角函数单调区间的方法。(9)化归思想:把未知化归为已知,例如用诱导公式把求任意角的三角函数值逐步化归为求锐角三角函数值;把特殊化归为一般,例如把正弦函数的图象逐步化归为函数y=Asin(ωx+ ),x∈R,(其中A>0,ω>0)的简图;把已知三角函数值求角化归为〔0,2π〕上适合条件的角的集合等;等价化归,例如进行三角函数式的化简、恒等变形和证明三角恒等式。
  • 高中数学知识点

  • 完整问题:高中数学 各种公式大全,各种方程的通式大全!各种知识点大全!
  • 好评回答:那就直接看高中的数学书,什么“大全”全部都在里面!!!
  • 如何做好初中和高中数学知识点的衔接?

  • 完整问题:如何做好初中和高中数学知识点的衔接?
  • 好评回答:可以将初中的书看一遍。
  • 我想知道高中数学的知识点总结

  • 完整问题:我想知道高中数学的知识点总结
  • 好评回答:必修2数学知识点1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。2、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。3、空间几何体的表面积与体积⑴圆柱侧面积; ⑵圆锥侧面积:⑶圆台侧面积:⑷体积公式:; ;⑸球的表面积和体积:。第二章:点、直线、平面之间的位置关系1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。2、公理2:过不在一条直线上的三点,有且只有一个平面。3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。4、公理4:平行于同一条直线的两条直线平行。5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。6、线线位置关系:平行、相交、异面。7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。8、面面位置关系:平行、相交。9、线面平行:⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。10、面面平行:⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。11、线面垂直:⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。⑶性质:垂直于同一个平面的两条直线平行。12、面面垂直:⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。第三章:直线与方程1、倾斜角与斜率:2、直线方程:⑴点斜式:⑵斜截式:⑶两点式:⑷一般式:3、对于直线:有:⑴ ;⑵ 和 相交 ;⑶ 和 重合 ;⑷ 。4、对于直线:有:⑴ ;⑵ 和 相交 ;⑶ 和 重合 ;⑷ 。5、两点间距离公式:6、点到直线距离公式:第四章:圆与方程1、圆的方程:⑴标准方程:⑵一般方程:。2、两圆位置关系:⑴外离:;⑵外切:;⑶相交:;⑷内切:;⑸内含:。3、空间中两点间距离公式:。
  • 求高中数学必修1的知识点总结

  • 完整问题:求高中数学必修1的知识点总结
  • 好评回答:1。集合  (约4课时)  (1)集合的含义与表示  ①通过实例,了解集合的含义,体会元素与集合的“属于”关系。  ②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。  (2)集合间的基本关系  ①理解集合之间包含与相等的含义,能识别给定集合的子集。  ②在具体情境中,了解全集与空集的含义。  (3)集合的基本运算  ①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。  ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。  ③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。2。函数概念与基本初等函数I  (约32课时)  (1)函数  ①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。  ②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。  ③了解简单的分段函数,并能简单应用。  ④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。  ⑤学会运用函数图象理解和研究函数的性质(参见例1)。  (2)指数函数  ①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。  ②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。  ③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。  ④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。  (3)对数函数  ①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。  ②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。  ③知道指数函数 与对数函数 互为反函数(a>0,a≠1)。  (4)幂函数  通过实例,了解幂函数的概念;结合函数 的图象,了解它们的变化情况。  (5)函数与方程  ①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。  ②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。  (6)函数模型及其应用  ①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。  ②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。  (7)实习作业  根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求。
  • 高中数学解析几何的重要知识点是什么

  • 完整问题:
  • 好评回答:1直线:倾斜角,斜率,夹角,距离,平行与垂直,线性规划,对称问题2圆:圆的标准方程,直线与圆的位置关系,圆心到直线距离,以及圆的应用3圆锥曲线:椭圆 ,双曲线 ?,抛物线的概念,性质,定理应用以及标准方程求采纳,谢谢
  • 版权声明